资源类型

期刊论文 108

年份

2023 15

2022 14

2021 13

2020 7

2019 6

2018 10

2017 7

2016 6

2015 3

2014 8

2013 3

2011 1

2010 3

2009 3

2007 4

2003 1

2001 1

2000 1

展开 ︾

关键词

深部开采 2

2

&alpha 1

Pm21 1

Pm40 1

Key technology 1

严重急性呼吸系统综合征冠状病毒2 (SARS-CoV-2) 1

二氧化碳 1

二氧化碳还原 1

产氧反应 1

作物种质资源 1

催化剂活化 1

光热 1

关键技术 1

内源抗性 1

助催化剂 1

原位谱学 1

固体氧化物燃料电池 1

固体氧化物电解池 1

展开 ︾

检索范围:

排序: 展示方式:

Roles of various Ni species on TiO

Xiaoping CHEN, Jihai XIONG, Jinming SHI, Song XIA, Shuanglin GUI, Wenfeng SHANGGUAN

《能源前沿(英文)》 2019年 第13卷 第4期   页码 684-690 doi: 10.1007/s11708-018-0585-8

摘要: Low-cost nickels can be used as cocatalyst to improve the performance of photocatalysts, which may be promising materials applied in the field of photocatalytic water splitting. In this study, different nickel species Ni, Ni(OH) , NiO, NiO , and NiS are used to modified titanium dioxide (P25) to investigate their roles on the photocatalytic hydrogen evolution activities. UV-visible, X-ray diffraction (XRD), Brunner-Emmet-Teller (BET) measurements, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) analysis etc. are employed to characterize the physical and chemical properties of catalysts. The results indicate that all the nickel species can improve the photocatalytic hydrogen production activity of P25. The P25 modified with NiO and NiS has more superior photocatalytic hydrogen evolution activities than those modified with other nickel species. The reason for this is that NiO and NiS can form p-n junctions with P25 respectively. In addition, NiO can be selectively deposited on the active sites of P25 via the photodeposition method and NiS is beneficial for H reacting with photo-excited electrons.

关键词: nickel species     TiO2     photocatalytic hydrogen evolution    

THE 4C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY

《农业科学与工程前沿(英文)》 2021年 第8卷 第3期   页码 387-399 doi: 10.15302/J-FASE-2021414

摘要:

Modern agriculture needs to develop transition pathways toward agroecological, resilient and sustainable farming systems. One key pathway for such agroecological intensification is the diversification of cropping systems using intercropping and notably cereal-grain legume mixtures. Such mixtures or intercrops have the potential to increase and stabilize yields and improve cereal grain protein concentration in comparison to sole crops. Species mixtures are complex and the 4C approach is both a pedagogical and scientific way to represent the combination of four joint effects of Competition, Complementarity, Cooperation, and Compensation as processes or effects occurring simultaneously and dynamically between species over the whole cropping cycle. Competition is when plants have fairly similar requirements for abiotic resources in space and time, the result of all processes that occur when one species has a greater ability to use limiting resources (e.g., nutrients, water, space, light) than others. Complementarity is when plants grown together have different requirements for abiotic resources in space, time or form. Cooperation is when the modification of the environment by one species is beneficial to the other(s). Compensation is when the failure of one species is compensated by the other(s) because they differ in their sensitivity to abiotic stress. The 4C approach allows to assess the performance of arable intercropping versus classical sole cropping through understanding the use of abiotic resources.

 

关键词: compensation     competition     complementarity     cooperation     interspecific interactions     land equivalent ratio     light     nutrients     species mixtures     water    

Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2088-2100 doi: 10.1007/s11705-023-2352-6

摘要: Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor application

关键词: nickel ferrite conductivity     carbon oxygen vacancies    

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 226-235 doi: 10.1007/s11705-022-2198-3

摘要: Prussian blue and its analogs are extensively investigated as a cathode for ammonium-ion batteries. However, they often suffer from poor electronic conductivity. Here, we report a Ni2Fe(CN)6/multiwalled carbon nanotube composite electrode material, which is prepared using a simple coprecipitation approach. The obtained material consists of nanoparticles with sizes 30–50 nm and the multiwalled carbon nanotube embedded in it. The existence of multiwalled carbon nanotube ensures that the Ni2Fe(CN)6/multiwalled carbon nanotube composite shows excellent electrochemical performance, achieving a discharge capacity of 55.1 mAh·g–1 at 1 C and 43.2 mAh·g–1 even at 15 C. An increase in the ammonium-ion diffusion coefficient and ionic/electron conductivity based on kinetic investigations accounts for their high performance. Furthermore, detailed ex situ characterizations demonstrate that Ni2Fe(CN)6/multiwalled carbon nanotube composite offers three advantages: negligible lattice expansion during cycling, stable structure, and the reversible redox couple. Therefore, the Ni2Fe(CN)6/multiwalled carbon nanotube composite presents a long cycling life and high rate capacity. Finally, our study reports a desirable material for ammonium-ion batteries and provides a practical approach for improving the electrochemical performance of Prussian blue and its analogs.

关键词: nickel ferrocyanides     NH4+     electrochemistry     Prussian blue     aqueous ammonium ion batteries    

COMPARING PERFORMANCE OF CROP SPECIES MIXTURES AND PURE STANDS

《农业科学与工程前沿(英文)》 2021年 第8卷 第3期   页码 481-489 doi: 10.15302/J-FASE-2021413

摘要:

Intercropping is the planned cultivation of species mixtures on agricultural land. Intercropping has many attributes that make it attractive for developing a more sustainable agriculture, such as high yield, high resource use efficiency, lower input requirements, natural suppression of pests, pathogens and weeds, and building a soil with more organic carbon and nitrogen. Information is needed which species combinations perform best under different circumstances and which management is suitable to bring out the best from intercropping in a given production situation. The literature is replete with case studies on intercropping from across the globe, but evidence synthesis is needed to make this information accessible. Meta-analysis requires a careful choice of metric that is appropriate for answering the question at hand, and which lends itself for a robust meta-analysis. This paper reviews some metrics that may be used in the quantitative synthesis of literature data on intercropping.

 

关键词: intercropping     species mixtures     meta-analysis     metrics     indicators    

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2114-2126 doi: 10.1007/s11705-023-2357-1

摘要: In this study, nickel phyllosilicate was synthesized based on molybdenum disulfide (MoS2@NiPS) by the sol-gel method, and then MoS2@NiPS was used to prepare epoxy composites. The thermal stability, flame retardancy, and frictional performances of epoxy composites were studied. With the addition of 3 wt% MoS2@NiPS, the epoxy composite increased the limiting oxygen index from 23.8% to 26.1% and reduced the vertical burning time from 166 s for epoxy resin to 35 s. The residual char of the epoxy composite increased from 11.8 to 20.2 wt%. MoS2@NiPS promoted the graphitization of the residual char, and facilitated the formation of a dense and continuous char layer, thereby improving the fire safety of epoxy resin. The epoxy composite with 3 wt% MoS2@NiPS had excellent wear resistance property with a wear rate of 2.19 × 10−5 mm3·N–1·m–1, which was 68.8% lower than that of epoxy resin. This study presented a practical approach to improve the frictional and fire resistance of epoxy composites.

关键词: molybdenum disulfide     nickel phyllosilicate     epoxy resin     flame retardancy    

Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently

《化学科学与工程前沿(英文)》 2022年 第16卷 第10期   页码 1493-1504 doi: 10.1007/s11705-022-2168-9

摘要: Metal−organic framework-derived materials have attracted significant attention in the applications of functional materials. In this work, the rod-like nickel-based metal−organic frameworks were first synthesized and subsequently employed as the hard templates and nickel sources to prepare the whisker-shaped nickel phyllosilicate using a facile hydrothermal technology. Then, the nickel phyllosilicate whiskers were evaluated to enhance the mechanical, thermal, flammable, and tribological properties of epoxy resin. The results show that adequate nickel phyllosilicate whiskers can disperse well in the matrix, improving the tensile strength and elastic modulus by 13.6% and 56.4%, respectively. Although the addition of nickel phyllosilicate whiskers could not obtain any UL-94 ratings, it enhanced the difficulty in burning the resulted epoxy resin nanocomposites and considerably enhanced thermal stabilities. Additionally, it was demonstrated that such nickel phyllosilicate whiskers preferred to improve the wear resistance instead of the antifriction feature. Moreover, the wear rate of epoxy resin nanocomposites was reduced significantly by 80% for pure epoxy resin by adding 1 phr whiskers. The as-prepared nickel phyllosilicate whiskers proved to be promising reinforcements in preparing of high-performance epoxy resin nanocomposites.

关键词: metal−organic framework     nickel phyllosilicate     whisker     epoxy resin     mechanical response     tribological performance     flammable property    

Tool wear mechanisms in the machining of Nickel based super-alloys: A review

Waseem AKHTAR,Jianfei SUN,Pengfei SUN,Wuyi CHEN,Zawar SALEEM

《机械工程前沿(英文)》 2014年 第9卷 第2期   页码 106-119 doi: 10.1007/s11465-014-0301-2

摘要:

Nickel based super-alloys are widely employed in aircraft engines and gas turbines due to their high temperature strength, corrosion resistance and, excellent thermal fatigue properties. Conversely, these alloys are very difficult to machine and cause rapid wear of the cutting tool, frequent tool changes are thus required resulting in low economy of the machining process. This study provides a detailed review of the tool wear mechanism in the machining of nickel based super-alloys. Typical tool wear mechanisms found by different researchers are analyzed in order to find out the most prevalent wear mechanism affecting the tool life. The review of existing works has revealed interesting findings about the tool wear mechanisms in the machining of these alloys. Adhesion wear is found to be the main phenomenon leading to the cutting tool wear in this study.

关键词: tool wear     nickel based super-alloy     wear mechanism    

Tracking in urban wastewater treatment plants in a cold region: Occurrence, species and infectivity

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1533-8

摘要:

Cryptosporidium in WWTPs in a cold region was investigated in different seasons.

关键词: WWTPs     Cryptosporidium     Occurrence     Species     Infectivity     Low temperature    

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 484-497 doi: 10.1007/s11705-021-2074-6

摘要: The nanocomposites of flower-like nickel phyllosilicate particles incorporated into epoxy resin were fabricated via an in-situ mixing process. The flower-like nickel phyllosilicate particles were firstly synthesized using a mild self-sacrificial templating method, and the morphology and lamellar structure were examined carefully. Several properties of mechanical, thermal and tribological responses of epoxy nanocomposites were performed. It was demonstrated that adequate flower-like nickel phyllosilicate particles dispersed well in the matrix, and the nanocomposites displayed enhanced tensile strength and elastic modulus but decreased elongation at break as expected. In addition, friction coefficient and wear rate were increased first and then decreased along with the particle content, and showed the lowest values at a mass fraction of 5%. Nevertheless, the incorporated flower-like nickel phyllosilicate particles resulted in the continuously increasing thermal stability of epoxy resin (EP) nanocomposites. This study revealed the giant potential of flower-like particles in preparing high-quality EP nanocomposites.

关键词: nickel phyllosilicate     flow-like structure     mechanical property     thermal stability     tribological performance    

Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments

Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-017-0990-y

摘要: The phytotoxicity of added copper (Cu) and nickel (Ni) is influenced by soil properties and field aging. However, the differences in the chemical behavior between Cu and Ni are still unclear. Therefore, this study was conducted to investigate the extractability of added Cu and Ni in 6-year field experiments, as well as the link with their phytotoxicity. The results showed that the extractability of added Cu decreased by 6.63% (5.10%–7.90%), 22.5% (20.6%–23.9%), and 6.87% (0%–17.9%) on average for acidic, neutral, and alkaline soil from 1 to 6 years, although the phytotoxicity of added Cu and Ni did not change significantly from 1 to 6 years in the long term field experiment. Because of dissolution of Cu, when the pH decreased below 7.0, the extractability of Cu in alkaline soil by EDTA at pH 4.0 could not reflect the effects of aging. For Ni, the extractability decreased by 18.1% (10.1%–33.0%), 63.0% (59.2%–68.8%), and 22.0% (12.4%–31.8%) from 1 to 6 years in acidic, neutral, and alkaline soils, respectively, indicating the effects of aging on Ni were greater than on Cu. The sum of ten sequential extractions of Cu and Ni showed that added Cu was more extractable than Ni in neutral and alkaline soil, but similar in acidic soil.

关键词: Copper     Nickel     EDTA     Sequential extraction    

Sulfidation/regeneration multicycle testing of nickel-modified ZnFe

Wei LI, Jinju GUO, Jiejie HUANG, Jiaotao ZHAO

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 435-440 doi: 10.1007/s11705-010-0506-9

摘要: A commercial metal oxide sorbent for the desulphurization of coal-derived gas requires high desulphurization reactivity, mechanical strength, ability to regenerate, and stability to endure many sulfidation-regeneration cycles. In this paper, the sulfur capacity and multiple cycles of a nickel-modified ZnFe O sorbent prepared by the sol-gel auto-combustion method were measured in a fixed-bed reactor at middle temperature of 300°C (sulfidation temperature) and 500°C (regeneration temperature). Also, the BET surface area, pore volume, average pore diameter and X-ray diffraction (XRD) patterns of the sorbent through multicycles were studied. Multicycle runs indicate that the sulfidation reactivity decreases slightly during the second cycle and keeps steady in the following cycles. The results indicate that the nickel-modified ZnFe O keeps high reactivity and structural stability in the multicycle testing of sulfidation/regeneration.

关键词: hot gas desulphurization     nickel-modified ZnFe2O4     sulfidation/regeneration    

IN VITRO ACTIVITY OF EXTRACTS OF FIVE MEDICINAL PLANT SPECIES ON PLANT PATHOGENIC FUNGI

《农业科学与工程前沿(英文)》 2021年 第8卷 第4期   页码 635-644 doi: 10.15302/J-FASE -2020343

摘要:

The antifungal effectiveness of extracts of five medicinal plant species was determined. The inhibitory activity of extracts of Eucalyptus tereticornisXanthium sibiricumArtemisia argyiTupistra chinensis and Pyrola calliantha were evaluated against the mycelial growth of the plant pathogenic fungi Aspergillus nigerBotrytis cinerea, Penicillium digitatumP. expansum, P. italicumand Rhizopus stolonifer. All plant extracts were prepared at 60°C using solvents (either water, 50% ethanol (v/v), 95% ethanol (v/v), ethyl acetate or petroleum ether). Fungicidal effects of all plants tested were confirmed. Different extracts from the same plant species gave different degrees of inhibition. All aqueous extracts had weak or no activity on all fungi tested. Ethyl acetate and 95% ethanol extracts from T. chinensis rhizomes gave greater inhibition and a broader spectrum inhibition than the other extracts. T. chinensis may have potential as a new natural fungicide and may be used for the preservation of agricultural and forestry products such as fruits and vegetables.

 

关键词: Botrytis cinerea / food preservation / plant diseases / plant pathogenic fungi / Tupistra chinensis    

Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and

Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 19-25 doi: 10.1007/s11705-010-0546-1

摘要: Two types of salicylaldiminato-based nickel complexes, mono-ligated Ni(II) complexes ([O-C H - - C(H)=N-Ar]Ni(PPh )(Ph) ( ), [O-(3,5-Br )C H - -C(H)=N-Ar]Ni(PPh )(Ph) ( ), [O-(3- -Bu)C H - -C(H)=N-Ar]Ni(PPh )(Ph) ( )) and bis-ligated Ni(II) complexes ([O-(3,5-Br )C H - -C(H)=N-Ar] Ni ( ), [O-(3,5-Br )C H - -C(H)=N-2-C H (PhO)] Ni ( ), Ar=2,6-C H ( -Pr) ) were synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), mass spectrography (MS) and elemental analysis (EA). In the presence of methylaluminoxane (MAO) as cocatalyst, all the nickel complexes exhibited high activities for the polymerization of methyl methacrylate (MMA) and syndiotactic-rich poly(methyl methacrylate) (PMMA) was obtained. The complexes with less bulky substituents on salicylaldiminato framework possessed higher activities, while with the same salicylaldiminato, the mono-ligated nickel complexes showed higher catalytic activity than bis-ligated ones.

关键词: late transition metal catalyst     methyl methacrylate     polymerization     salicylaldiminato nickel complexes     methylaluminoxane     syndiotactic structure    

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

《化学科学与工程前沿(英文)》 2022年 第16卷 第9期   页码 1367-1376 doi: 10.1007/s11705-022-2153-3

摘要: The exploration of efficient bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction is pivotal for the development of rechargeable metal–air batteries. Transition metal phosphides are emerging as promising catalyst candidates because of their superb activity and low cost. Herein, a novel metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrid was developed by a carbothermal reduction of cobalt/nickel phosphonate hybrids with different Co/Ni molar ratios. The metal phosphonate derivation method achieved an intimately coupled interaction between metal phosphides and a heteroatom-doped carbon substrate. The resultant Co2P/Ni3P@NC-0.2 enables an impressive electrocatalytic oxygen reduction reaction activity, comparable with those of state-of-the-art Pt/C catalysts in terms of onset potential (0.88 V), 4e selectivity, methanol tolerance, and long-term durability. Moreover, remarkable oxygen evolution reaction activity was also observed in alkaline conditions. The high activity is ascribed to the N-doping, abundant accessible catalytic active sites, and the synergistic effect among the components. This work not only describes a high-efficiency electrocatalyst for both oxygen reduction reaction and oxygen evolution reaction, but also highlights the application of metal phosphonate hybrids in fabricating metal phosphides with tunable structures, which is of great significance in the energy conversion field.

关键词: metal phosphonate     cobalt/nickel phosphide     N-doped carbon     oxygen electrochemistry     Zn−air battery    

标题 作者 时间 类型 操作

Roles of various Ni species on TiO

Xiaoping CHEN, Jihai XIONG, Jinming SHI, Song XIA, Shuanglin GUI, Wenfeng SHANGGUAN

期刊论文

THE 4C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY

期刊论文

Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor

期刊论文

Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage

期刊论文

COMPARING PERFORMANCE OF CROP SPECIES MIXTURES AND PURE STANDS

期刊论文

Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance

期刊论文

Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently

期刊论文

Tool wear mechanisms in the machining of Nickel based super-alloys: A review

Waseem AKHTAR,Jianfei SUN,Pengfei SUN,Wuyi CHEN,Zawar SALEEM

期刊论文

Tracking in urban wastewater treatment plants in a cold region: Occurrence, species and infectivity

期刊论文

Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance

期刊论文

Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments

Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma

期刊论文

Sulfidation/regeneration multicycle testing of nickel-modified ZnFe

Wei LI, Jinju GUO, Jiejie HUANG, Jiaotao ZHAO

期刊论文

IN VITRO ACTIVITY OF EXTRACTS OF FIVE MEDICINAL PLANT SPECIES ON PLANT PATHOGENIC FUNGI

期刊论文

Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and

Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU

期刊论文

Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen

期刊论文